

Copyright ©2009 OTO MACHINES SARL.
Copyright ©200s
All rights reserved.
No part of this manual may be reproduced in any form without the written permission of OTO MACHINES SARL. Product features, specifications, availability and informations in this manual are subject to change without notice. mww.otomachines.com

Do not eat Biscuit.
Before uning gitcul, make sure you read all the instructions below, and the User Manual
BIIccuit should be connected to a power supoly only of the type descaribed in this man
 The included AC adaptor has some openings on its enclosure for cooling purpose. Do not
obstruct these openings, or place things on the top of the $A C$ adaptor which could prevent normal cooing.
If your Biscuit is unused for a long period of time, disconnect the AC adaptor from the Outiet.
Biscuit in combinetion with an extemal amplification system or headphones. may gener.
 start with how volume.
Do not expose EISCuIT and it AC adaptor to rain, moisture, dust, sand or dirt.
Do not expose biscuir and its AC adaptor tor rain, moisture, dust, sand or dirt.
Never use or store Biscuit near water, for example sea, swimming pool, bathtub, kitchen
or bathroom sink.
Biscult should be ocated way from hish temperatures $(>35$ degrees C), for example
direct sunlight in an enclosed venicle, radiators, heat registers, stoves or other heat

Warming on eppliepsy
Avery smal percernage of individuals may experience epileptic seizures or blackouts when exposed to certain lisht patters or f fashing Iilight. ffyou have an epiliep
nad seizures of any kind, oonsult your physicien before using Biscuit.

Waranty
Biscuit is sold with one year full werranty. This warranty covers all malrunctions that may
occur foom nomal use, and does not cover damage due to abuse, faulity connections or

 Customer oovers shipoping coust of fearty yitiscuit to oro Machines and OTO Machines cork
ers Shipping cost tack to customer. Disposal
tie trash can symbed idictes. The trash can symbol incicate
ol local laws and regulations.
siscuit has been tested to comply with the 2004/108/EC EMC Directive.

Table of contents

1.1 User Interface/ Front Pane
1.2 Rear Panel
1.3 Example connections
$\begin{array}{ll}\text { 1.4 } & \text { Diagram } \\ 1.5 & \text { Set the In }\end{array}$
2 Biscuiting
3 Effects
$\begin{array}{ll}\text { 3.1 } & \text { Waveshaper } \\ 3.2 & \\ \text { Delay }\end{array}$
$\begin{array}{ll}\text { 3.1 } & \text { Wavesna } \\ \text { 3.2 } & \text { Delay } \\ 3.3 & \text { Pitch }\end{array}$
3.3 Pitch Shifter
3.4 Step Filter
page 24
4.1 Saving a preset
$\begin{array}{lll}\text { 4.2 } & \text { Recalling a prest } \\ 4.3 & \text { Snapshots }\end{array}$
4.3 Snapshots
$\begin{array}{ll}\text { 4.4 } & \text { Potentiometers position } \\ 4.5 & \text { Factory presets }\end{array}$
5 Midi
5.1 Midi Channel
5.2 Midi Filters
5.3 Presets Dump
5.4 Program Chang

6 Specifications

Thank you for choosing the BISCUIT !
BISCUIT is a stereo effects processor. Thanks to a subtle blend of 8 -bit digital and analog processing, BISCuIT is able to create a wide range of sounds. It goes fom \& character and lo-fi digital artefacts to numer

BISCUIT is very useful to add depth and texture to any kind of electronic sound. It works best with synthesizers (digital or analog), bassline, drum machines, loops, samplers or computers, but you can use it with any other source.

BISCUIT is basically an enhanced bit depth and sample-rate reducer, known
as "bitcrusher", followed by an analog filter and a simple mixing section
(dry/wet). It also offers otherfeatures like removing or inverting each of the 8 bits, changing the sample rate from 250 Hz to 30 KHz , or adding one of the four effects (waveshaper, delay, pitch shifter and step filter).

You can save the complete BISCUIT settings (pots and switches) in 16 presets.
SysEx dump function lets you save and recall as many presets as you like on your computer.

Features

Stereo inputs and outputs

- Input gain from - $-\infty$ to 15 dB with diode clipping Input gain from -o to 15 dB with diode clipping
Real 8 -bit Analog to Digital and Digital to Analog converters True analog multimode filter with resonance control - Variable sample clock from 250 Hz to 30 kHz Unique capability of muting and inverting each of the 8 bits FX section: Waveshaper, Delay, Pitch Shifter and Step Filter Separate level control of dry and 8 -bit signals 16 presets
MIDI compatible
True relay bypas
Rugged metallic Neutrik® connectors
1.1 USER INTERFACE/ Front Panel |01|

1 DRIVE : Input gain (from $-\infty$ to +15 dB) placed before the AD conversion. A diode clipper protects the converters
2 NAKED : Dry signal level (from - $-\infty$ to 0 dB)
3 DRESSED : 8-bit signal level (from - $-\infty$ to 0 dB)
4 Q : Filter Resonance
5 FILTER : Filter type. Switch colour indicates which type of filter is selected: Green is for Low-pass, Yellow for Band-pass and Orange for Hi-pass
6 FREQ : Filter cutoff frequency (from 20 Hz to 15 kHz)
7 BRAIN : When BRAIN is off, the switches 1 to 8 are used for Biscuiting (cf Chap. 2). When BRAIN is Blue, the switches 1 to 8 are used for selecting FXs and parameters. This switch is also used for recalling and saving Presets and to access the MIDI section
$\mathbf{8}$ CLOCK : Sample Clock Frequency (from 250 Hz to 30 kHz). This pot is also used in the FX section to set parameters
9 BYPASS : True relay bypass. When the switch lights up green, BISCUIT is active. It turns orange when input signal is strong. When its light is off, BISCUIT is inactive and input signal is directly routed to output jacks, with no electronics in between

10-1 to 8: These switches have 2 main functions : muting or inverting the 8 bits and selecting FX type and parameters. They are also used for presets, MIDI section and snapshots

IN L/MONO : Left or Mono input. Unbalanced $1 / 4^{\prime \prime}$ jack
2 IN R : Right input. Unbalanced $1 / 4^{\prime \prime}$ jack
2 IN R : Right input. Unbalanced $1 / 4^{\prime \prime}$ jack
3 out L: Left output. Unbalanced $1 / 4^{\prime \prime}$ jack
4 out R : Right output. Unbalanced $1 / 4^{" ~ j a c k ~}$
$\mathbf{5}$ MIDIN : MID input
5 MIDI IN : MIDI input
7 AC ADAPTOR INPUT : Only use a 9 volts AC adaptor, 500 mA minimum with a 2.1 mm plug
8 POWER SWITCH

1.4 DIAGRAM |04|

After changing gain by using the DRIVE pot, the sound is converted into an 8 -bit digital signal. The sample clock can be adjusted from 250 Hz to 30 kHz . By lowering the sampling frequency aliasing effects are produced. You can mute or invert each of the 8 bits using the 8 rectangular switches. The sound is then converted into an analog signal and goes to a multimode filter to be mixed with the direct signal (via the NAKED and the DRESSED pots).

1.5 SEt THE INPUT LEVEL

The DRIVE pot adjusts the signal level at the BISCUIT input. Turn this pot counterclockwise for strong input signals, and clockwise for weaker signals.
The BYPASS switch lights up green when BISCUIT is active, and for no or moderate input signal. The light goes from green to orange to indicate a strong signal.

In normal use, the BYPASS switch should change to orange quite often.
If the BYPASS switch lights up orange when the DRIVE pot is below its 90^{\prime} clock position, it means that your input signal is too strong (loud line-level for example). Reduce the source level to obtain a better DRIVE range and to avoid clipping.

3.1 WAVESHAPER

A waveshaper is a device that modifies the signal waveform using digital processing. BISCUIT offers you 8 types of waveshaping. These treatments 2), or even generate a synthesizer waveform (type 6 to 8).

Only the $\alpha /$ / $\mathbf{F 1}$ " and + / F2 s switches are used in this effect. They alow you to select one of the 8 types of waveshaping. The switch lit up white ndicates the current selection. |09|

The CLOCK pot acts as usual (changing the sampling frequency), except

WAVESHAPER TYPES |10

1/ Rectifing : The negative parts of the signal are inverted and become positive. This waveshaper creates an octave up effect, similar to a fuzz octave pedal.
2/Altermate rectifing : Only the positive parts of the signal are used, and one of two are taken off. This waveshaper creates a distorted octave down effect.
3/ Bat Fuzz : Beyond a certain threshold, sound is inverted, as in a mir-
ror.
$4 /$ Biscuit : This create a fifth down effect with some crunchy saturation added.
5/Swap : The 1 to 4 bits are swapped with the 5 to 8 bits. This distortion I/ Swap : The 1 to 4 bits are swapped with the 5 to 8 bits. This distortion
is pretty radical and full of high harmonics. It may be close to white noise depending on the signal level. Try to lower the DRIVE pot to get different sound colours.

The 6,7 and 8 waveshapers are little synthesizers. They generate a waveform that tracks input signal frequency. These 3 waveshapers work best on bass synth sounds but can lead to stunning results on other sources. The DRIVE pot works at the same time on the sensitivity of the filter attack and on the detection of input signal to generate the waveform. To allow the oscillator to work properily, BISCUIT needs a certain amount of input signal. Thus the BYPASS switch should often light up orange. Adjust the DRIVE pot to obtain a stable sound and a well-defined attack.

The CLOCK pot sets the level of the filter attack.
The cLock pot sets the level of the filter attack. (lege (legato), the filter atWhen the incoming signal attacks are not detached (legato), the filter at-
tack will not be triggered. Play staccato or play on a keyboard (connected to MIDI in) to trigger attacks. Check that the NOTE ON function in the MIDI menu is on.(of Chap5)

|13|

6/ Sawtooth wave oscillator at input signal frequency.
input signal frequency. 8/ Square wave oscillator an octave below the input signal frequency.

NB : Even if you can use both Biscuiting and Waveshapers at the same time, the difierent waveform modifications it creates can sometimes confilict, resulting in a very low sound level. In order to have a better understanding of the Waveshapers, start using them with the $\mathbf{8}$ bits in their normal state (the 8 switches lit up white).
3.2 delay

This is an 8 -bit mono delay. Only the left input is used. The delay output is ent on both left and right outputs and can be mixed with the direct stereo ignal, via the DRESSED and NAKED pots.
 parameters:

TAP : Tap this switch in rhythm to set the delay time. The switch will flash in hythm. If BISCUIT receives a MIDI BEAT CLOCK message, the "TAP" switch will be inactive and the delay time will follow the MID tempo (unless you have deactivated the MIDI CLOCK RX function in the MIDI menu. Chap 5).

F1 : subdivisions : |11| When this switch lights up red, the CLOCK pot : aliows you to select

- Quarter Note (switch 1 lights up white)

Quarter Note (switch 1 lights up white)
Dotted Quarter Note (switch 2 lights up white

- Dotted Quarter Note (switch 2 lights up white
- Dotted Eighth (switch 4 lights up white)
- Sixteenth (switch 5 lights up white)

Dotted Sixteenth (switch 6 lights up white

F2: Feedback : When this switch lights up red the CLOCK pot sets the delay reiniection Ievel: from 0 (switch 1 lights up white) to 100% (switch 8 delay reinjection level
lights up white). $|12|$

F3 : Free Clock : When this switch lights up red, the TAP TEMPO or the MIDI BEAT CLOCK are inactive. The delay time is now set by the CLOCK pot. $|13|$ If you press the «F3 " switch again (it turns off), delay will go back to TAP TEMPO or the MIDI BEAT CLOCK.

3.4 STEP FLLTER

STEP FLTER allows you to memorize 8 positions (steps) of the FREQ pot and to read these different steps one after the other. Many settings of Play depends on TAP TEMPO or MIDI BEAT CLOCK. A MIDI START message will depenas on TAP TEMPO or MIDI BEAT CLOCK. A MIDI START message will lock the first step to the beginning of the first bar.
 FiLTER parameters.
 acts as usual (modification of the sampling frequency).

TAP : Tap this switch in rhythm to set the STEP FLLTER speed. The switch will flash in rhythm. If BISCUIT receives a MIDI BEAT CLOCK message, the TAP nempo (Ulles you have deactivated the MDI CLOCK RX function in he MIDI menu. Cf Chap 5). fi:witie:Whe the
. WRite : When this switch lights up red, you can record any position of he FREQ pot (Filter cutoff frequency) in one of the 8 steps. The CLOCK pot allows you to choose one of the 8 steps (that lights up white). To record a cutoff frequency value, you just have to move the FREQ pot to the desired
position. If you don't touch the FREQ pot, the previous value will not be erased. |17|

F2 : RUN : When this switch lights up red, you can choose one of the 3
play modes and select one of the 5 speeds.
Press the «TAP switch to select one of the 3 play modes, indicated by one of the 3 first switches lit up white. |18|

1/ Forward : The steps play from left to right, looping back to step 1 when the last step is reached (depending on the NUMBER parameter).

2/ Alternate : The steps play from left to right. When the last step is reached (depending on the NUMBER parameter), the steps play in reverse, from right to left.

3/ Random : The steps play at random.
Move the cLock pot to select one of the 5 speeds, indicated by one of the last 5 switches lit up white. |19]

4/ Speed $x 1$: The STEP FLLTER goes at the TAP TEMPO or MIDI BEAT cLock Speed.

5/ Speed $\times 2$: The STEP FLTER goes twice as fast as the TAP TEMPO or midi beat clock Speed.

6/ Speed x4 : The STEP FLTTER goes four times as fast as the TAP TEMPO or MIDI BEAT CLOCK Speed.

7/ Speed $x 8$: The STEP FLLTER goes eight times as fast as the TAP TEMPO or MIDI BEAT CLOCK Speed.

8/ Speed $\times 24$: The STEP FILTER goes 24 times as fast as the TAP TEMPO or MIDI BEAT CLOCK Speed.

F3 : NUMBER : When the switch lit up red, you can choose the number of steps with the CLOCK pot. One of the $2,3,4,6,8$ switches lit up white indicating the current number of steps. |20|

Summary of the fx parameters : |21|

	TAP	-/F1	+/F2	F3
WAVESHAPER (1)	Not Used	SELECT ONE OF THE 8 WAVESHAPER	SELECT ONE OF THE 8 WAVESHAPER	NOT USED
deLay	tap tempo	DIVISION (2) 」 d.	FEEDBACK (2) FROM OTO 100%	FREE CLOCK (2) delay time
PITCH SHITTER (3)	Not used	not used	Not UsED	Not UsED
STEP FLTER	TAP TEMPO \& SELECT THE PLAY MODE WHEN F2 IS LT UP	WRITE SELECT THE STEP WITH CLOCK MOVE FREO TO WRITE	RUN SPEED (2): x1 $\times 2 \times 4 \times 8$ or $\times 24$ PLAY MODE (hit TAP): : ww, alt, random	NUMBER (2) 2, 3, 4, 6 or 8 STEPS

NB 1 : The CLOCK pot sets the filter attack for the WAVE number 6, 7 and 8 (oscillators).
NB 2 : Use the CLOCK pot to modify the parameters.
NB 3 : The CLOCK pot select the pitch :- 2 oct, -1 oct, -5 th, detune, +3 rd m, +3 rd M, +5 th, +1 oct.
|23|

4. PRESETS

You can save all the BISCUIT functions (pots position, switches, filter, bypass, $f \mathrm{fx}$ in one of the 16 presets.

4.1 SAVING A PRESET

While pressing the BRAIN switch, press the FILTER switch.
Keep pressing the BRAIN switch for 2 seconds. |22|
The switches $\mathbf{1}$ to $\mathbf{8}$ flash red. Press one of the switches $\mathbf{1}$ to $\mathbf{8}$, all the Biscuit functions will be saved in the corresponding preset.

Switches will then revert to the display of the 8 bits status.
To save the presets 9 to 16 , do the same as explained above. When the 8 switches flash red, press the BRAIN switch again. The BRAIN switch turn switches flash red, press the BRAIN switch again. The BRAIN switch turns
blue. |23| You can then save to one of the presets 9 to 16 by pressing one blue. |23| You can then save to one of the presets 9 to 16 by pressing one
of the switches $\mathbf{1}$ to $\mathbf{8}$.

4.2 RECALLING A PRESET

While pressing the BRAIN switch, press the FILTER switch. |24| The switches 1 to $\mathbf{8}$ flash white. Press one of the switche 1 to $\mathbf{8}$ to reall the desired preset. Switches stop flashing. The selected switoh will light up for 2 seconds.
Switches then revert to the display of the 8 bits status.
To recall one of the presets 9 to 16 , do the same as explained above. When the 8 switches are flashing white, press the BRAIN switch again. The BRAIN switch turns blue. $|23|$ You can now select one of the presets 9 to 16 , by pressing the switches $\mathbf{1}$ to $\mathbf{8}$.

To exit the «saving a preset » or "recalling a preset » mode, press again EHUT ISCUIT will revert to its regular state.

4.3 SNAPSHOTS

You can save your 8 bits configuration in one of the 8 memory slots called "Snapshot $\#$.
Snapshots only save the 8 bits status. If you want to save all the BISCuIT functions (pots, effects and parameters), use the Presets (of Chap 4). The 8 snapshots are independent from the presets.

SAVING A SNAPSHOT

While pressing the BRAIN switch, press the " 1 TAP " switch.
|27|

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
LOVE 8	OLD COMPUTER	BITS BENDING	DARK SIDE
$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
NISE ADDER	STEP FAZOR	RUSTY JAM	DELAY DELay dela
9	10	$\mathbf{1 1}$	$\mathbf{1 2}$
BROKEN DELAY	CONTINENTAL	NAUTLUS	MIDLINE
13	14	$\mathbf{1 5}$	$\mathbf{1 6}$
DETUNE	BECQUEREL	DIRTY LEAD	DIGITAL DUCK

4.4 POTENTIOMETERS POSItIO

Once you recall a preset, the physical position of a pot may not be the same as in the preset.
To prevent a sudden jump of volume after recalling a preset, the preset To prevent a sudaen jump of volume atier recaliing a prese,
value will reach the pot value in a smooth fade of 1 second.

If you want to know the original value of a pot in the preset you just recalled, keep pressing the BRAIN switch and move this pot. The BYpAss switch turns blue when the pot reaches the preset value.

4.5 FACTORY PRESETS

The 16 BISCUIT presets contain factory settings called the factory presets. |27|

By saving your own presets, you will erase these factory presets. By saving your own presets, you will erase these factory presets.
You can still recall these 16 factory presets whenever you want. While
pressing the BRAIN switch, press the FLLTER switch. Keep pressing the pressing the BRAIN switch, press the FLLTER switch. Keep pressing the
BRAIN switch for 4 seconds. $|28|$ The switches 1 to 8 will first flash red after 2 seconds, and will flash pink 2 seconds later. Press one of the switches $\mathbf{1}$ to $\mathbf{8}$ to recall the desired factory preset. Switches stop flashing. Only the selected switch stays alight for 2 seconds.

5.2 MIDI FILTERS

The switches $\mathbf{1}$ to $\mathbf{6}$ light up or flash red. When the switch is flashing, th corresponding function is inactive, and when the switch is on, the function is active. Press one of the switches $\mathbf{1}$ to $\mathbf{6}$ to activate or deactivate the
following functions: | $133 \mid$
1/ LOCAL contro
1/ LOCAL CONTROL : Internal connection between the physical controls
(pots and swithes) and the BIScuIT electronics can be enabled or dis(pots and switches) and the Biscuit erectronct
abled. This can be usefu with an external sequencer.
2/ SEND CC : Enables the physical controls (pots and switches) to senc their corresponding CONTINUOUS CONTROLLER message. |37|

3/ RECEIVE CC : Enables BISCUIT functions (drive, filter,...) to be cor olled by incoming CONTINUOUS CONTROLLER messages |37|信 chronised to the incoming BEAT CLOCK messages (including START and 5/ RECEIVE PGM : Enables BISCUIT to follow incoming PROGRAM CHANGE messages.
GOCIVE NOTE : Enables BISCUIT to accept incoming NOTE ON messages. (for Waveshapers nr $6,7,8 \&$ Pitch shifter).

5.3 PRESETS DUMP

This sub-menu allows you to save one or all BISCUIT presets to a computer and recall them back later, using a Sysex (S) ato Exclusive MIDI. message Connect BISCUIT to your computer's MID interface to sen and receive presets.

The switches $\mathbf{1}$ to $\mathbf{4}$ light up red. Press one of the switches $\mathbf{1}$ to $\mathbf{4}$ to access the following DUMP actions : |34|

1/ SEND ONE PRESET : The switches 1 to $\mathbf{8}$ flash white. Press one of the switches $\mathbf{1}$ to $\mathbf{8}$ to send the desired preset as a SysEx file.

To send one of the presets 9 to 16 , do the same as explained above. Whe the 8 switches are flashing white, press the BRAIN switch again. BRAIN switch turns blue. You can now send one of the presets 9 to 16 , by pressin the switches $\mathbf{1}$ to $\mathbf{8}$.

2/ SEND ALL PRESETS : The 16 presets will be sent in an unique SysEx file.
3/ RECEIVE ONE PRESET : The switches $\mathbf{1}$ to $\mathbf{8}$ flash red. Press one of the switches 1 to $\mathbf{8}$ to select the preset destination. The corresponding switc will turn pink, waiting for a manually sent SysEx file from the computer.

Status	DESCRIPTION
0xFO	sYstem exclusive
0x00	OTO MACHINES ID 1
0x20	OTO MACHINES ID 2
0x70	OTO MACHINES ID 3
0x01	BISCUT ID
0x01	PRESET DUMP CODE
0xv	PRESET NUMBER (00 T0 15)
oxv	PRESET PACKED DATA (40 BYTES)
0xF7	End of Exclusive

4/ RECEIVE ALL PRESETS : The switches 1 to 8 light up pink, waiting for a SysEx file from the computer (you should send the SysEx file manually).
The 16 presets from the SysEx file are now stored in the BISCuIT's 16 The 16 presets from the SysEx file are now stored in the BISCUIT's 16 presets.

To exit the «MIDI SETTING » mode, press the BYPASS switch again while pressing the BRAIN switch, or wait for 10 seconds. BISCUIT will revert to its regular state.

The table |35| shows you the content of BISCUIT's SysEx DUMP messages. ${ }_{32}$

ysex nota bene :

If you encounters problems when sending or receiving presets by SysEx,
try to :

- set the delay between played messages or buffers of the program being used to transfer the SysEx messages to 250 ms ,
- reduce the transmit speed of the program being used to transfer reduce the transmit sp
the SysEx messages,
update the drivers for your MIDI interface,
- remove any devices between your interface and BISCUIT such as MIDI thru boxes, mergers, splitters ...
- use another interface.
${ }^{|36|}$

5.4 PROGRAM CHANGE

You can recall a BISCUIT preset from a MIDI controller or a computer using PROGRAM CHANGE messages.

PROGRAM CHANGE allows you to recall 128 programs but there's only 16 presets in BISCUIT memory.
The first 16 PROGRAM CHANGE messages (0 to 15) correspond to the 16 BISCUIT presets. The following 16 PROGRAM CHANGE messages (16 to 31) will correspond also to the 16 BISCUIT presets,. The following table indicates which BISCUIT preset is recalled by a PROGRAM CHANGE message [36

\％	$\stackrel{\sim}{\sim}$	๕	\％	¢	¢
冗．	\％	¢	※	N	$\stackrel{8}{8}$

Impedance

Output
Output Connectors Maximum Output Level
$2 \times$ unbalanced $1 / 4^{\prime \prime}$ jacks
$+14,7$ dBu (Naked) $2 x$ unbalanced $1 / 4$
$+14,7$ dBu (Naked) +5 dBu (Dressed, Drive pot @ 10 0^{\prime} clock position
390 kohms

$2 \times$ unbalanced $1 / 4^{\prime \prime}$ jacks

$2 \times$ unbalanced $1 / 4^{\prime \prime}$
$+14,7$ dBu (Naked) +5 dBu (Dressed) 220 ohms

General Size $(W \times H \times D)$ Weight

Extermal 9VAC power supply included Externa Consumption Size $(W \times H \times D)$

Weight
$190 \mathrm{~mm} \times 60 \mathrm{~mm} \times 117 \mathrm{~mm}$ $7.48^{\prime \prime} \times 2.36^{\prime \prime} \times 4.60$ $580 \mathrm{~g} / 1.27 \mathrm{Ib}$

4,2 Watts max 7,2 Watts max $\times 50 \mathrm{~mm}$ $2.95^{\prime \prime} \times 3.15^{\prime \prime} \times 1.96^{\prime \prime}$ $245 \mathrm{~g} / 0.53 \mathrm{lb}$

